A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics

نویسندگان

  • Xuechuan Wang
  • Satya N. Atluri
چکیده

A new class of time-integrators is presented for strongly nonlinear dynamical systems. These algorithms are far superior to the currently common time integrators in computational efficiency and accuracy. These three algorithms are based on a local variational iteration method applied over a finite interval of time. By using Chebyshev polynomials as trial functions andDirac–Delta functions as the test functions over the finite time interval, the three algorithms are developed into three different discrete time-integrators through the collocation method. These time integrators are labeled as Chebyshev local iterative collocation methods. Through examples of the forced Duffing oscillator, the Lorenz system, and the multiple coupled Duffing equations (which arise as semi-discrete equations for beams, plates and shells undergoing large deformations), it is shown that the new algorithms are far superior to the 4th order Runge–Kutta and ODE45 of MATLAB, in predicting the chaotic responses of strongly nonlinear dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

An efficient analytical solution for nonlinear vibrations of a parametrically excited beam

An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...

متن کامل

A Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force

This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...

متن کامل

Efficient Solution of Nonlinear Duffing Oscillator

In this paper, the efficient multi-step differential transform method (EMsDTM) is applied to get the accurate approximate solutions for strongly nonlinear duffing oscillator. The main improvement of EMsDTM which is to reduce the number of arithmetic operations, is thoroughly investigated and compared with the classic multi-step differential transform method (MsDTM). To illustrate the applicabil...

متن کامل

Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term

This paper presents the high order frequency-amplitude relationship for nonlinear transversely vibrating beams with odd and even nonlinearities, using Homotopy Perturbation Method with an auxiliary term (HPMAT). The governing equations of vibrating buckled beam, beam carrying an intermediate lumped mass, and quintic nonlinear beam are investigated to exhibit the reliability and ability of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017